Exam Lie Groups in Physics

Date	November 8, 2021
Room	Exam Hall 1
Time	08:30-11:30
Lecturer	D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- The weights of the four problems are given below
- Illegible handwriting will be graded as incorrect
- Good luck!

Weighting

Problem 1

(a) Provide the definition of a Lie algebra.
(b) Write down the properties of a homomorphism between two Lie algebras.
(c) Show that the Lie algebra of an invariant subgroup H of a group G forms an invariant subalgebra L_{H} of the Lie algebra L_{G} of G.

Problem 2

Consider the Lie algebra $s u(n)$ of the Lie group $S U(n)$ of unitary $n \times n$ matrices with determinant equal to 1 .
(a) Decompose the following direct product of irreps into a direct sum of irreps of $s u(n)$, in other words, determine its Clebsch-Gordan series:

(b) Write down the dimensions of the irreps appearing in the obtained decomposition for $s u(2)$ and $s u(3)$. Indicate the complex conjugate and inequivalent irreps whenever appropriate.
(c) Relate the above decomposition for $s u(2)$ to the addition of 3 angular momentum states in Quantum Mechanics. Write this explicitly in terms of eigenvalues of the 3 angular momentum states to be added and of the total angular momentum.

Problem 3

Consider the group $O(2)$ of real orthogonal 2×2 matrices.
(a) Write down all elements of $O(2)$ in its defining representation.
(b) Use Schur's lemma to show that the defining representation of $O(2)$ is irreducible.
(c) Explain why applying Schur's lemma to the generators of $O(2)$ transformations is insufficient to conclude whether or not a representation is irreducible.
(d) Write down a 3-dimensional representation of $O(2)$.

Problem 4

Consider the group $S L(2, \mathrm{C})$ of 2×2 complex matrices with determinant equal to 1 and its relation to the Lorentz group.
(a) Show that

$$
H(\chi, \hat{n}) \equiv \exp (-\chi \hat{n} \cdot \vec{\sigma} / 2)=1 \cosh (\chi / 2)-\hat{n} \cdot \vec{\sigma} \sinh (\chi / 2),
$$

for any unit vector \hat{n} and real parameter χ. Recall that the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right),
$$

satisfy $\sigma_{i} \sigma_{j}=\delta_{i j} 1+i \epsilon_{i j k} \sigma_{k}(i=1,2,3)$, and that $\cosh \chi=\left(e^{\chi}+e^{-\chi}\right) / 2$ and $\sinh \chi=$ $\left(e^{x}-e^{-x}\right) / 2$.
(b) Show that all $H(\chi, \hat{n})$ are elements of $S L(2, \mathrm{C})$.

Next consider the homomorphism from $S L(2, \mathrm{C})$ to the Lorentz group $O(3,1): A \mapsto L^{\mu}{ }_{\nu}=$ $\frac{1}{2} \operatorname{Tr}\left(\tilde{\sigma}^{\mu} A \sigma_{\nu} A^{\dagger}\right)$, where $\sigma^{\mu}=(1, \vec{\sigma})$ and $\tilde{\sigma}^{\mu}=(1,-\vec{\sigma})$, such that $\operatorname{Tr}\left(\sigma^{\mu} \tilde{\sigma}^{\nu}\right)=2 g^{\mu \nu}$.
(c) Explain why this homomorphism is neither 1-1 (injective) nor onto (surjective) when viewed as a mapping to the full Lorentz group $O(3,1)$.

